彩虹多多客户端下载_彩虹多多骗局
彩虹多多走势图2023-01-31 16:05

“特别能聊”的人工智能会聊出些什么?******

  聊天机器人ChatGPT优异表现引发市场关注,人工智能生成内容概念走上风口

  “特别能聊”的人工智能会聊出些什么?

  本报记者 时斓娜

  阅读提示

  全新人工智能聊天机器人模型ChatGPT不仅能够通过学习人类的语言来进行对话,还能根据聊天的上下文进行互动,让人们更直观地感受到了人工智能的魅力。包括内容生成、搜索引擎增强等在内的领域,将是其潜在的产业化方向。ChatGPT的商业化落地,还需要克服技术和科技伦理等方面的问题。

  家里要养一只猫,该如何给猫取名字?怎样写出一个纸牌游戏的代码?在不同语境中,词语“意思”到底有几个意思?这些五花八门、时常令人绞尽脑汁都难以得出答案的问题,在人工智能聊天机器人ChatGPT的面前,不过是瞬间便可迎刃而解的“一碟小菜”。

  产品发布短短两个月,ChatGPT的日活量已突破千万,不少人“聊过”之后惊呼“这太像真正的人类了”。其超预期的表现引发越来越多的市场关注,人工智能生成内容(AIGC)概念由此走上风口。

  人工智能聊天究竟能聊些啥?ChatGPT所代表的AIGC应用将带来哪些影响和变化?记者对此进行了调查采访。

  “真正像人类一样聊天交流”

  “我所热爱的是我真实的生活,因为它包含了我所有的经历和感受,是我每一天都在体验和思考的。”这句乍看上去充满了人类体悟和情感的话,实则出自人工智能聊天机器人ChatGPT。

  随着ChatGPT大火,不少网友将它与自己的聊天记录分享到社交平台上,ChatGPT时而诙谐有趣,时而又显得思想深邃。除了各种聊天互动外,还有不少网友们将ChatGPT视为一种工具,让其写作文、翻译文章,甚至写代码。迅速的响应能力和较为靠谱的回答让大家直呼其“真正像人类一样聊天交流”“特别能聊”。

  中国信息通信研究院联合中国人工智能产业发展联盟对ChatGPT进行的测试显示,ChatGPT在百科检索、数学问答、文学交流、常识问答、知识推理等对话任务上的意图识别率均达到98%左右,在生活闲聊上的意图识别率约为95%,已具备较好的语义理解能力。

  实际上,ChatGPT属于生成式人工智能的一个典型应用。人工智能是怎样“进化”得如此智能的?“这是因为ChatGPT建立在大型语言模型上,会通过连接大量的语料库来训练模型。这些语料库包含了真实世界中的对话和各种网络公开信息,使ChatGPT知识丰富,还能根据上下文进行互动。”深度科技研究院院长张孝荣表示。

  创新交互为AIGC带来新启发

  随着人工智能技术的发展,近年来AIGC类型不断丰富、质量不断提升、技术的工程化水平越来越高,国内外科技公司纷纷发力布局AIGC领域。

  以百度文心大模型为例,输入一个题目,它可以瞬间写出上百篇作文;根据一句话或者一段描述文本,可以生成一幅精美的画作;根据一幅图像,可以自动生成高清、流畅的视频。

  在百度技术委员会主席吴华看来,ChatGPT在用户界面和交互上是一种比较创新的模式,用户更容易以自然语言的方式进行交互,这会给大家带来革新性的认识,也会给AIGC带来新的启发。

  目前,国外一些公司在积极探索并落地ChatGPT的诸多应用场景,通过将ChatGPT整合进搜索引擎等方式提高服务智能化水平。有观点认为,ChatGPT将颠覆搜索行业,在智能客服、游戏、虚拟人等领域也将得到广泛应用。硅谷投资机构红杉预测,未来AIGC有潜力产生数万亿美元的经济价值。

  根据中国信息通信研究院发布的《人工智能白皮书(2022年)》,“生成式人工智能”技术将广泛应用于智能写作、代码生成、有声阅读、新闻播报、语音导航、影像修复等领域,听说读写等能力的有机结合成为未来发展趋势。

  “人工智能生成在诗歌、作曲、绘画等艺术创作方面大放异彩,在分子结构、软件代码等科研生产领域的应用不断拓展,还帮助降低临床试验的科研成本和缩短研发周期。”云计算与大数据研究所内容科技部副主任石霖表示,当前,人工智能生成内容的辐射范围还在扩大,未来有望重塑各行业领域的研发面貌。

  商业化落地需克服技术和伦理问题

  尽管各界对AIGC发展前景保持乐观,但从现状来看,ChatGPT等产品想要真正落地,还需要克服技术和科技伦理等方面的问题。

  在对ChatGPT进行的种种评测中,ChatGPT会犯一些常识性错误,反映出其在可控性、准确率方面仍存不足。有人形容,ChatGPT像极了一个很能聊但有时候喜欢信口开河的人类朋友。

  中国信息通信研究院评测结果同样显示,ChatGPT在非闲聊型对话的任务完成率上表现一般,难以摆脱传统深度学习模型普遍存在的知识整合和逻辑推理的问题。

  “ChatGPT虽然能够较好地回答不少问题,但在一些略有深度的、专业性较强的领域,其答案往往‘捉襟见肘’。这说明ChatGPT语料库规模和计算能力的天然不足,也说明了算法依然需要完善。”张孝荣说。

  在技术层面以外,人工智能还面临着悬而未决的科技伦理问题。张孝荣表示,ChatGPT在科技伦理方面至少面临三大挑战:“一是版权问题,ChatGPT生成的内容更多来自搬运,容易引发侵权;二是信息安全问题;三是社会缺乏接纳这一新生事物的准备机制,这对监管挑战很大。”

  在国内,AIGC产业化路径同样有待探索。石霖介绍说,国内AIGC产业基础薄弱,相关初创公司数量明显少于国外。同时,国内企业目前仍处于打磨产品阶段,还未出现较为好用的内容生成服务。

彩虹多多客户端下载

静心探索重要的基础科学问题不求“短平快”70后物理学家翁红明******

  翁红明在讲解电子运输理论。

  田春璐摄

  人物简介:

  翁红明,1977年出生,现为中国科学院物理研究所凝聚态理论与材料计算实验室研究员、博士生导师。主要致力于凝聚态物理计算方法和程序的开发以及新奇量子现象的计算研究,成果入选2015年度中国科学十大进展、英国物理学会《物理世界》2015年度十大突破、美国物理学会《物理评论》系列期刊创刊125周年纪念文集等。

  在中科院物理研究所(以下简称“物理所”)的年轻人里,研究员翁红明是小有名气的一位。就在刚刚过去的2022年,他因在数学物理学领域的杰出贡献,获得第四届“科学探索奖”。

  在国际计算凝聚态物理研究领域,翁红明成果颇丰。其中最为人称道的,是他和同事们合作首次在固体中观测到外尔费米子和三重简并费米子的准粒子。这是国际上物理学研究的重要科学突破,对拓扑电子学和量子计算机等颠覆性技术的诞生具有非常重要的意义。

  自由思考、厚积薄发,真正对人类文明有所贡献

  1928年,英国物理学家保罗·狄拉克提出了描述相对论电子态的狄拉克方程。1929年,德国科学家赫尔曼·外尔指出,当质量为零时,狄拉克方程描述的是一对重叠的具有相反手性的新粒子,即外尔费米子。这种神奇的粒子带有电荷,却不具有质量,因而具有确定的手性(指一个物体不能与其镜像相重合,如我们的双手,左手与右手互成镜像,但不能重合)。

  但是80多年过去了,科学家们一直没有能够在实验中观测到外尔费米子。直到2015年1月初,中科院物理所方忠研究员带领的研究组与普林斯顿大学研究小组合作,从理论上预言了在以砷化钽为代表的一批材料中存在着外尔费米子。此后,这个理论预言经过实验得到了进一步验证。

  在研究过程中,翁红明发挥了至关重要的作用。他从发表于1965年的一篇实验文献中受到启发,并通过第一性原理计算,初步认定砷化钽晶体等同结构家族材料可能是无需进行调控的、本征的外尔半金属。这类材料能够合成,没有磁性,没有中心对称,是实验制备、检测都非常便捷的绝佳材料。

  翁红明说:“这一发现的难度在于,从众多材料中找到合适的对象犹如大海捞针,必须对外尔费米子和材料物理特性都有相当认识才行。”

  在外尔费米子被发现的一年后,翁红明和同事们又进一步“预言”:在一类具有碳化钨晶体结构的材料中存在三重简并的电子态。

  2017年6月,这个新预言被实验证实,三重简并费米子被首次观测到。这是物理所科研团队继拓扑绝缘体、量子反常霍尔效应、外尔费米子之后,在拓扑物态研究领域取得的又一次重要突破,引起国际物理学界广泛关注。

  成绩源于多年的深耕积累。翁红明很享受在物理所工作的经历:“这无关荣誉,我找到了更感兴趣、更加深入的研究领域和方向。”

  自由思考、厚积薄发,一直是翁红明喜欢的学术氛围。他所追求的不是多发表文章,而是能攀登科学高峰,真正对人类文明有所贡献。

  科研仅靠一个人或一个小组的力量是不够的

  作为理论物理学家,翁红明专攻量子材料的计算和设计。

  物理学通常分成两大类,即理论物理和实验物理。理论物理通过理论推导和公式推算得出的结论被称为“预言”,“预言”必须通过实验验证才能成为国际公认的科学事实。

  在翁红明看来,他接连获得的几次重大发现,都离不开与同事们的通力合作。这,也是他做科研一直特别重视的一点。

  “理论预言、样品制备和实验观测,这三个环节缺一个都不行。”翁红明说,“在当今科学领域细分程度非常高的情况下,科研仅靠一个人或一个小组的力量是不够的。当有重要任务目标时,我们几个小组紧密合作,在理论、样品、实验等环节实现了环环相扣、无缝对接。”

  在许多人的想象中,理论物理学家的工作,就是每天独自埋头在稿纸堆里计算推演,然后坐着冥思苦想、灵光乍现。

  但翁红明认为,计算推演的确要做,思考分析也不可少,但和同行们的交流也非常重要。他每天上班的第一件事就是查看和了解国际上最新的科研进展,然后分析、思考、计算,再把自己的想法跟同事们交流。“很多时候,我的一些想法,或者说突然的一些灵感,其实都是在思考、交流和工作过程当中产生的。”

  “发现三重简并费米子”这一成果,就源于翁红明和石友国、钱天两位同事一次喝咖啡时的思想碰撞。

  物理所的咖啡厅在学术界享有盛誉,不但因为咖啡好喝,也因为常有科研人员汇聚在此畅聊科学、各抒己见,聊着聊着,灵感经常“火花四射”。

  和大家一样,翁红明、石友国和钱天工作之余也喜欢在咖啡厅一聚。翁红明有什么新想法会第一时间告诉他俩;石友国和钱天在实验过程中有什么新发现或疑惑,也会第一时间反馈给翁红明。

  “闲聊中就能交换信息,我们的交流是完全敞开的,毫无保留地让大家知道彼此做了什么。”翁红明说。

  翁红明告诉记者,在科研道路上,自己非常珍视的成功秘诀有两个,一个是注意总结和积累,另一个就是跟别人多交流。

  “目前我努力发展基于大数据和人工智能的凝聚态物质科学研究,其实也是基于这两点考虑,因为所有人的知识积累都体现在这些数据当中。”翁红明说。

  做研究应该抓住一些更新奇、更本质的问题

  1977年,翁红明出生在江苏泰兴一户普通人家。他的父母都是农民,家里还有一个姐姐。

  初中开始,翁红明第一次接触到物理,从此便沉迷其中。“物理让我对周围的世界有了更深入的了解和认识。”翁红明说。

  兴趣是最好的老师。对物理的热爱,指引着翁红明叩开了物理科学的大门。

  1996年,翁红明参加高考。在填报志愿时,他毫不犹豫地将所有的志愿都填上了物理。最终,他如愿被南京大学物理系录取。

  南京大学的物理系在凝聚态物理领域积淀很深。翁红明在这一领域进行相关知识的学习与研究,一学就是9年,直到博士毕业。毕业后,他去了日本的东北大学金属材料研究所做博士后研究,主要研究各种材料的导电性质。

  到日本一年半后,翁红明萌生了转换研究方向的想法。

  “我想要转到计算方法和程序的发展上,这是凝聚态物理领域中一个最基础也是最具有核心竞争力的方向。”翁红明说,“如果想要在这个领域有长远发展,就要在这个方向上有一定的积累。”在他看来,静下心来探索重要的基础科学问题,要比做一些“短平快”研究更有意义。

  想归想,但真正下定决心,翁红明也经过了一番纠结。

  他坦言:“当转到一个更基础的方向,也意味着你在未来的几年甚至是更长的时间里都需要耐得住坐冷板凳。所以必须做好思想准备,去做一些积累性的工作。”

  2008年,翁红明的人生又有了一次重大转折。

  那一年,物理研究所研究员、博士生导师方忠到日本访问交流,翁红明跟他进行了深入的交谈和讨论。

  翁红明告诉记者:“他跟我介绍了当时做的一项很有意思的工作。虽然我那时并没有很深刻的理解,却受到很大的启发——做研究应该抓住一些更新奇、更本质的问题。”

  在方忠的影响下,2010年,翁红明决定回到国内,入职物理研究所,成为方忠团队的一名成员。

  翁红明说:“每个人在一生当中可能会跟很多人交往交谈,但在人生重要转折时刻能够给你启发的却不多。能有这样的机遇去跟方忠老师交流并受到启发,我觉得这是非常宝贵和幸运的。”

  在新的一年里,翁红明说自己有很多研究工作要做,尤其是如何在拓扑电子学器件研究方面取得突破,促使拓扑电子态理论变成可落地应用的技术。而这,需要跟器件和应用等方向的研究人员进行交流和讨论。

  翁红明相信,拓扑时代的黎明时分正在临近。(记者 吴月辉)

中国网客户端

国家重点新闻网站,9语种权威发布

彩虹多多地图