彩虹多多走势图 - 彩虹多多漏洞
彩虹多多手机版2023-01-31 16:05

吟唱架起情谊之桥——访两岸联吟发起人、台湾教师孙永忠******

  中新社北京1月9日电 题:吟唱架起情谊之桥——访两岸联吟发起人、台湾教师孙永忠

  作者 朱贺

  “尽管相聚短暂,但学生间建立的情谊比想象中深厚。庆幸他们能在学生时代结识跨越海峡的朋友,这是一种美好。”

  近日,台湾辅仁大学中文系教师孙永忠接受中新社记者采访,回忆十余年来两岸大学生通过古典诗词联吟活动缔结的深厚情谊。作为两岸联吟活动发起人,年逾六旬的孙永忠说,诗友们都期待早日恢复面对面交流。

  幼时,孙永忠常听父亲吟唱念诗,觉得这种吟哦(放声朗读)的方式有些怪;大学时期,曾在北京求学的诗学老师用“北平腔”吟唱,“有京韵大鼓的感觉”。成为大学教师后,孙永忠发现学生们念诗时少了一种情韵,“当中需要‘细嚼慢咽’的东西不见了”。

  “大家习惯用文字书写,却缺少了许多想象力。问起为何‘独坐幽篁里’,而不是坐在别的地方?李白吟出‘床前明月光’时,身处室内还是室外?学生很难给出答案。”孙永忠认为,帮助学生以吟唱方式依照古调或新曲把诗句唱出来,将节奏放慢,留下时间来品味、想象,“穿越”回到那个“当时”,或能更接近诗人的真实情感,感知中华古典诗词的本味。

  1994年,孙永忠把吟唱带进课堂,并在辅仁大学的东篱诗社中刮起“旋风”。2006年来大陆参加学术交流,孙永忠发现在台湾高校已蔚然成风的吟唱形式,在大陆仍然鲜见。第二年,孙永忠带领宝岛青年在北京师范大学等高校进行吟唱展演,收获了出乎意料的反响。当青年们和着鼓乐吟唱诗经《小雅·蓼莪》,台下师生被深深打动。

  与海峡对岸的东篱诗社遥相呼应,南山、悠然、采菊等诗社在大陆多地高校成立。北京师范大学的师生形容孙永忠“带了把火来”,孙永忠则认为一切只是水到渠成。

  2008年,以“古韵新妍”为名的两岸青年古典诗词联吟活动应运而生,40位大陆师生赴台参加首届活动。活动在两岸高校间轮流举办,至今已至十三届,成为两岸学子一年一度的诗词盛宴。

  联吟亦成为架起两岸情谊的桥梁。孙永忠谈道,有大陆学生后来结婚,台湾伙伴专程搭飞机送上祝福;有台生来大陆发展或旅游观光,会专程拜访当地诗友。

  学子的生活也被吟唱所影响。孙永忠说,有学生当了教师,一样把吟唱带进课堂;有学生在困惑时唱起苏轼的“谁怕?一蓑烟雨任平生”……“每人心中都能有一两首诗词,在得意或失意之时吟哦两句,排遣一下”,在孙永忠看来,这正是吟唱的意义。

  十余年来,孙永忠常为大陆各地诗社授课,并留下录音资料、曲谱及“服务电话”,诗社间也建立起友谊。他期待各家诗社有自己的钻研、尝试和突破,形成风格。

  2019年第十三届联吟活动在徐州举行后,实体交流中断,但孙永忠始终与各诗社保持着线上往来。一次为江苏师范大学悠然诗社解惑,燃起了孙永忠再为两岸联吟“添一把火”的愿望;在两岸五家诗社的推动下,“古韵新妍2023冬季联吟展演”近日于大陆平台直播,在青年诗友间掀起新的涟漪。

  早已将吟唱视作一生志业,孙永忠对在不久后恢复线下两岸联吟抱有很大期待。他在社交媒体中写下:吟唱是一辈子的美好,每当诗乐悠扬,我们的青春情怀便再一次的涤荡;诗词蕴有的真善美,可长葆生命的清新热忱。(完)

彩虹多多走势图

竹子“变身”高透光电磁屏蔽材料******

  竹材是一种常见的生物质材料,具有可持续性、生长速度快、资源丰富等优点,被广泛用于家具制造及家居装饰用材领域。但是,你见过透光竹材吗?它不仅透光还可以隔热、保温、屏蔽电磁,这样神奇的材料是怎么制成的呢?

  近日,南京林业大学家居与工业设计学院吴燕教授领衔的课题组,通过一种简单高效的处理方式,将竹材转化为具有良好光学性能的透光原竹和透明竹片,同时保留了原竹天然形状和纤维素骨架结构。日前,相关研究论文发表于国际期刊《纳微快报》。

  科技创新将竹材利用最大化,竹材逐渐作为木材、塑料、钢筋等材料的替代品被开发利用,形成了重组竹、竹编工艺品、竹纤维制品、竹碳制品等100多个系列上万个品种,竹材产品已经覆盖生产生活的各个领域。我国是世界竹材产品生产、贸易第一大国,2020年,全国竹产业产值近3200亿元。

  随着人们对家居环境个性化装饰需求的日益增多,将竹材等环保材料转化为新型材料的研究越来越多,吴燕课题组的研究便是其中之一。

  论文第一作者王晶介绍,透光竹材的制备主要分为两个步骤,第一步是去除发色基团,第二步是浸渍折射率与竹纤维素模板相同的聚合物。

  由于竹材的孔隙率较低,竹材去除木质素和浸渍聚合物的时间比巴沙木、杨木等密度较小的木材要长,因此制备具有一定厚度的透光竹材是一项挑战。

  该课题组选取5年生毛竹为原材料,将去青后的原竹浸泡在过氧化氢和乙酸混合溶液中,再利用简单的化学预处理脱除原竹中的木质素,木质素的去除会导致更多孔隙出现,有利于下一步的填充过程。最后向竹纤维素模板中填充折射率指数与其相匹配的树脂,再经过快速固化工艺,一款具有优异光学传输性能、抗拉伸性能、表面装饰性和美学价值的透光竹材便应运而生了。与其他不同聚合物浸渍方法制备的生物质透明样品相比,透光原竹固化时间非常短,因此显示出显著的快速制备加工潜力。

  “此类将原竹直接加工成竹纤维素模板再合成透明材料的方法,将大大减少前期原料机械加工和后期原料成型的步骤,不仅减少了能耗,也减少石化资源的浪费。”吴燕说。同时,这个方法还可以用于处理其他高密度、低孔隙率的生物质材料。

  据介绍,透光竹材的壁厚可达6.23毫米,透光率约60%,照度为1000勒克斯,吸水质量变化率小于4%,纵向抗拉强度达到46.40兆帕,表面性能为80.2HD(布氏硬度计测试出来的硬度单位)。

  吴燕教授领衔的课题组将透光原竹与透明竹片、电磁屏蔽膜组成一款复合器件,整体结构类似于常见的蜂窝板,其中透光原竹充当核心骨架、透明竹片为面板、锡掺杂氧化铟薄膜为功能层。

  经过研究发现,这款复合器件可表现出显著的隔热、保温性能以及电磁屏蔽性能,在家居与建筑装饰材料领域具有广阔前景。(记者 张 晔 通讯员 方彦蘅 姚会春)

中国网客户端

国家重点新闻网站,9语种权威发布

彩虹多多地图